
T1t FILE C

N

~OF

A 3-D VIRTUAL ENVIRONMENT
DISPLAY SYSTEM

THESIS

Robert Edward Filer
Captain, USAF

____________ DTIC
F-LECTE
DEC151980s®B

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

I- oo -- 8 9 12 15 043
nfum nmu 8 v

AFIT/GCS/ENG/89D-2

A 3-D VIRTUAL ENVIRONMENT
DISPLAY SYSTEM

THESIS

Robert Edward Filer
Captain, USAF D TIC

AFIT/GCS/ENG/89D-2 ELECTE

Approved for public release; distribution unlimited

AFIT/GCS/ENG/89D-2

A 3-D VIRTUAL ENVIRONMENT

DISPLAY SYSTEM

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Systems)

Robert Edward Filer, B.S.

Captain, USAF

December, 1989

Approved for public release; distribution unlimited

Preface

The purpose of this study was to research the current state-of-the-art in Virtual

Environment Display Systems and to develop such a system at the Air Force Institute

of Technology (AFIT). This involved the development of a software library and a

head-mounted display (HMD).

I am indebted to many individuals for their assistance on this project. First,

I would like to thank my advisor, Major Phil Amburn, who was always there to

answer my questions and put me back on the right track. I want to thank the

AFIT Model Shop, especially Mr. Jan LeValley, for the construction of the AFIT

Head Mounted Display II. My gratitude also goes to Armstrong Aerospace Medical

Research Laboratory, the National Oceanic and Atmospheric Administration, and

the Air Force Office of Scientific Research for their sponsorship of this effort.

I would finally like to thank my wife Sherrie for hanging in there and toughing

it out with me.

Robert Edward Filer

Aooession For

NTIS GRA&I f"

DTIC TAB Q
Unannounced 0
Just ir ± ati la

By -
Dist ribution/

Av~ilabillty Codea
Avai and/or

Dist Special11 I ...

Table of Contents

Page

Preface

List of Figures vi

List of Tables viii

Abstract ix

I. Introduction.

1.1 Background. 1

1.2 Problem 1

1.3 Scope 2

1.4 Assumptions 2

1.4.1 Input Server Hardware Selection. 4

1.4.2 Graphics Hardware Selection 4

1.4.3 Programming Language Selection 5

1.5 Literature Review 5

1.5.1 University of Utah. 6

1.5.2 Human Resources Laboratory

1.5.3 Massachusetts Institute of Technology. 7

1.5.4 NASA. 7

1.5.5 University of North Carolina at Chapel Hill. . . . 8

1.5.6 Commercial Products. 8

1.6 Summary. 8

1.7 Thesis Overview 9

111

Page

II. Software Library. 10

2.1 Introduction 10

2.2 Input Device Software. 10

2.2.1 Requirements 10

2.2.2 Implementation 11

2.2.3 Remote Input 22

2.3 Graphics Display Software. 25

2.3.1 Requirements 25

2.3.2 Virtual Environment Objects. 26

2.3.3 Miscellaneous 29

2.4 Summary 32

111. Head Mounted Display 33

3.1 Introduction 33

3.2 HMD-I 33

3.2.1 Description 33

3.2.2 Problems. 33

3.3 HMD-II. 35

3.3.1 Requirements 35

3.3.2 Design. 35

3.3.3 Components. 38

3.3.4 Construction. 40

3.4 Summary 43

IV. Summary 46

4.1 Results 46

4.1.1 Software 46

4.1.2 Head-Mounted Display. 47

iv

Page

4.2 Recommendations. 47

4.2.1 Software 47

4.2.2 Head-Mounted Display. 48

4.3 Future Applications 49

Appendix A. Manual Pages 50

Appendix B. HMD-11 User's Guide. 74

Appendix C. AFIT Geometry File Format. 79

Bibliography. 81

Vita. 83

V

List of Figures

Figure Page

1. VEDS Input Routines 12

2. CH Products Microstick Joystick 13

3. Joystick Data Structure. 14

4. CIS Dimension Six Force-Torque Ball. 15

5. Dimension Six Data Structure 16

6. VPL Dataglove. 17

7. Dimension Six Data Structure 18

8. Polhemus 3-Space Tracker. 19

9. Poihemus Initialization Code. 20

10. Polhemus Field Orientation 21

11. Polhemus Data Structure 21

12. Server Main Task Pseudocode 23

13. Remote Input Routines. 24

14. Virtual Environment Object 27

15. Filled Object Movement. 29

16. Simulated Hand Model 30

17. HMD-I 34

18. Fresnel Press-on Prism Use in HMD-I. 36

19. Side View of the First HMD-II Design 37

20. Top View of the Second HMD-II Design. 38

21. Final HMD-11 Design. 39

22. LEEP Optics. 40

23. Pin-cushion Distortion of LEEP Optics. 41

24. Sony FDL-330 Color LCD Monitor. 42

vi

Figure Page

25. HMD-II. 44

26. HMD-II In Use. 45

27. Block Diagram of the HMD-JI System 75

28. 10-Pin and 4-Pin Connector Pin Numbers. 78

vii

List of Tables

Table Page

1. Joystick Byte Stream 14

2. Dimension Six Byte Stream 15

3. Polhemus Byte Stream 19

4. Server Configuration File Parameters 24

5. Client Data Retrieval Commands 25

6. HMD-II Wiring Harness Pinouts 77

7. AFIT Geometry File Format 80

viii

AFIT/GCS/ENG/89D-2

Abstract

The design and development of a Virtual Environment Display System is pre-

sented. The system is composed of two main parts, a software library to support

the development of virtual environment applications and a head-mounted display for

viewing the virtual environment.

The software library provides support for numerous input devices including a

VPL DataGlove, Polhemus 3-Space Tracker, Dimension Six Force-Torque Ball, and

a joystick. Graphical objects can be displayed in either wireframe or shaded mode.

Three dimensional pop-up menus are provided.

The head-mounted display is a fully-enclosed viewing device built using off-the-

shelf components. The displays are color LCD televisions and are viewed through

wide angle optics. Head position and orientation are tracked using a Polhemus 3-

Space Tracker. I-

ix

A 3-D VIRTUAL ENVIRONMENT

DISPLAY SYSTEM

L Introduction

1.1 Background

In 1965, Ivan Sutherlana conceived of the Ultimate Display, one which would

incorporate sensory inputs of all kinds (22:507). He envisioned one day being able

to sit in computer generated chair, converse with a computer generated person, and

the computer generated apple pies would smell just like Mom's. As noted by Chung

et al, the "holodeck" from the television series "Star Trek-The Next Generation" is

the final evolution of Dr. Sutherland's Ultimate Display, what we today call a virtual

environment. (5:1).

The Armstrong Aeromedical Research Laboratory at Wright-Patterson AFB,

OH, like Dr. Sutherland, is also in search of the ultimate display. Their ultimate

display will come in the form of the Super Cockpit, a futuristic aircraft cockpit

designed to enhance pilot performance through the use of innovative man-machine

interfaces. One of those interfaces, and the focus of this thesis, is the Head Mounted

Display (HMD). An HMD is a display device worn by the user in which the displayed

image changes in response to the wearer's head motion.

1.2 Problem

At the Air Force Institute of Technology (AFIT) in 1988, Captain Bob Rebo

constructed a virtual environment system based on an HMD of his own design (15).

The system was constructed of low-cost, off-the-shelf components, and functioned

remarkably well. The development of the first AFIT HMD system provided an

1

excellent testbed for the study of virtual environment applications. Captain Gary

Lorimor has used the HMD-I system to view 3-D time-dependent data of an Air

Force training exercise, and the system has been used to view simulated ballistic

missile trajectories (12). However, being only a first generation system, there was

insufficient time to develop a complete software library to allow the HMD-I system

to be used to its full potential. In addition, being the first head-mounted display

developed at AFIT, the system suffered from the following problems:

1. Poor display quality.

2. Excessive system weight.

3. Inability to fit every user.

1.3 Scope

The goal for this thesis is to develop a 3-D Virtual Environment Display System

(VEDS). This system will consist of a library of software routines specifically tailored

for use in a virtual environment system, and a head-mounted display for placing the

user in the virtual environment. The software library will support many 2-D and 3-D

input devices including a joystick, a Dimension 6 force-torque ball, a VPL Dataglove,

and a Polhemus 3-Space Tracker. In addition, the library will support both 2-D and

3-D display devices. The HMD will be a stereo capable, enclosed color system with

wide-angle optics. Off-the-shelf components will be used in the construction of the

head-mounted display.

1.4 Assumptions

This thesis will require significant computer processing power to handle both

the input devices and the graphics display. The AFIT computer graphics laboratory

has three computers capabkc ot performing the required tasks.

2

The first machine is a Silicon Graphics Inc. IRIS 3130 graphics workstation.

The IRIS 3130 is a single processor system based on the Motorola 68020 capable

of approximately two million operations per second (MIPS). It has a 19 inch color

monitor and a 24 bit frame buffer. The IRIS 3130 is equipped with a proprietary

Geometry Engine which greatly speeds graphics operations. However, the graphics

operations supported by the Geometry Engine are limited to vectors and flat-shaded

filled polygons; texture mapping is not supported (18). For serial input/output (I/O)

the IRIS 3130 has three RS-232 ports.

The second machine that is available is a Sun Microsystems Inc. Sun-4/260

equipped with a TAAC-1 general purpose bit-sliced processor. The Sun-4/260 is a

single processor system based on Sun's proprietary Symmetric Processor ARChitec-

ture (SPARC) processor and is capable of eight MIPS performance. This machine

also has a 19 inch color monitor but only an eight bit frame buffer. Serial I/O on

the Sun-4/260 is limited to two RS-232 ports. The Sun-4/260 is a poor performer

at high speed interactive graphics, but when paired with the TAAC-1 processor, its

vector graphics performance greatly improves. The filled polygon performance of

the TAAC-1 processor cannot match that of the IRIS 3130 and its Geometry Engine

(21).

The third machine is a Digital Equipment Corporation (DEC) MicroVax 3.

The MicroVax uses a DEC proprietary central processor operating at approximately

three MIPS. The MicroVax has no graphics capability but has been equipped with

twelve serial ports, more than enough to handle the several input devices required

in this thesis.

A fourth type of machine, a DEC MicroVax 3/GPX was also available for use

in this effort but had previously been found incapable of hosting virtual environment

applications (12:25).

3

1.4.1 Input Server Hardware Selection. The basic requirements for the input

server machine were that it (a) have enough serial ports to handle all the supported

devices, (b) be powerful enough to handle input from all devices simultaneously, and

(c) be connected to the other graphics lab machines through the lab network.

Only the MicroVax 3 met all these requirements. Though all machines in

the AFIT graphics lab are connected to the lab network, and all have sufficient

processing power to handle the input devices, the lack of serial ports ruled out all

but the MicroVax 3.

1.4.2 Graphics Hardware Selection. The Silicon Graphics IRIS and the Sun-

4 were each evaluated for its ability to perform the types of operations necessary in a

virtual environment application. The following provides a summary of the evaluation

criteria used in selecting a particular machine.

Graphics Capability: The first and most important criterion for selecting one

machine over another was the interactive graphics capability. The evaluation

of graphics capability included (a) the speed at which the machine could draw

both vectors and filled polygons, and (b) the geometric primitives supported

by the graphics hardware (if any) and by the graphics software.

Ease of Use: This criterion was used to judge how easy it was to write a simple

graphics application. This related directly to the graphics software library

support provided with the machine.

Code Development Tools: Since all of the candidate machines ran the Unix oper-

ating system, a strong code development environment existed on each. Of main

concern was the programming language support since C++ was the desired

implementation language. If C++ was not available then the C programming

language would be used.

NTSC Output: This item was a necessity if the machine was to drive the head-

mounted display, which was a fundamental assumption of this thesis.

4

The Silicon Graphics IRIS 3130 and the Sun 4/260 with TAAC-1 Application

Accelerator were evaluated using the criteria above, and the following results were

obtained.

Sun 4/260 with TAAC-1: The Sun-4 alone was incapable of supporting a virtual

environment application. However, when used in conjunction with the TAAC-1

Application Accelerator, a sufficient level of graphics performance was possible,

but only using wireframe models. The TAAC-1 has its own graphics library

and can support NTSC output. The Sun-4 has support for C++, but TAAC-1

programs must be written in C.

IRIS 3130: The IRIS 3130 is a high performance graphics workstation specifically

designed for 3-D and animation. It has an adequate code development environ-

ment, but does not support C++. The IRIS has dedicated graphics hardware

making it very fast for graphics. NTSC output is supported. The graphics

library is extremely easy to use, and provides all the functionality necessary

for development of a virtual environment application.

Based on the selection criteria, the Silicon Graphics IRIS 3130 was clearly the

only machine capable of supporting a virtual environment application.

1.4.3 Programming Language Selection. The choice of machine drove the

choice of programming language for software development in this thesis. The IRIS 3130

supported numerous programming languages including FORTRAN, Pascal and C.

However, C++ was not available despite several attempts by the author to obtain

it. Therefore, C was chosen as the development language.

1.5 Literature Review

Virtual environment display systems have been around for almost twenty-five

years, and the basic system has changed very little. Almost all virtual environment

5

systems consist of a head-mounted display with a sensor to track head movement

and some basic software to update the view accordingly.

One fundamental difference in virtual environment systems is the type of HMD

that is used, either see-through or fully enclosed. The see-through design superim-

poses the computer generated image on the real environment, while the fully enclosed

approach allows the user to see only the computer generated images. Each type of

system has advantages and disadvantages and finds application in different fields of

study.

The following paragraphs present a somewhat chronological review of virtual

environment display systems developed over the past twenty years. The list is by no

means complete, but does describe the "major" systems that have been developed.

1.5.1 University of Utah. As early as 1966, Ivan Sutherland was experiment-

ing with three dimensional displays. While working at MIT's Lincoln Laboratory,

Dr. Sutherland developed one of the first, if not the first, head-mounted display.

The optical system was primitive and only presented an image to one eye. However,

in conjunction with an ultrasonic position sensor to track head movement, he was

able to create the illusion of three dimensions (23:763). As he wrote at the time:

Even with this relatively crude system, the three dimensional illu-
sion was real. Users naturally moved to positions appropriate for the
particular views they desired. (23:763)

After moving to the University of Utah in 1968, Sutherland began work on

a new head-mounted display. This system used two miniature cathode ray tubes

(CRTs) in conjunction with some magnifying optics to present a virtual image eigh-

teen inches in front of the eyes. The system was a see-through design, allowing the

user to look out into the real world. With two separate CRTs, the system was capa.

ble of producing a stereo image. In fact, Sutherland was surprised at the favorable

6

response to the use of stereo. The user's head position was tracked using either of

two methods, mechanical or ultrasonic (23:758-763).

1.5.2 Human Resources Laboratory. In 1981, Dennis Breglia and others from

the Air Force Human Resources Laboratory at Williams Air Force Base in Arizona

built a working head-mounted display. Their system used a small projector lens on

top of a helmet worn by the user to project images on a dome screen (1:246). As the

user turned his head, the projector moved accordingly, keeping what he should see

projected directly in front of him. Since the image from the head-mounted projector

only filled a portion of the user's field of view, separate stationary projectors were

used to fill the rest of the dome. Because the system required a large dome to view

the projected images, the system's use was limited.

1.5.3 Massachusetts Institute of Technology. Mark Callahan, in 1983, for his

Master's thesis at MIT's Architectural Machine Group built an HMD using two

Sony black and white CRTs mounted on a bicycle helmet (3). The two inch diagonal

measure CRTs were positioned near the wearer's forehead with the display screens

facing downward. The wearer looked through a pair of beam splitters, viewing the

real and the virtual environment at the same time. Callahan used a Polhemus 3-

Space Tracker to track head motion. One of Callahan's innovations was the use of

interactive video disc for image generation.

1.5.4 NASA. Recent work at NASA's Ames Research Center has focused on

the use of a head-mounted display to "facilitate natural interaction with complex

operational tasks and to augment operator situational awareness" (7:77). NASA's

main line of research with this system has been in remote robotic control and robotic

telepresence, specifically geared toward space applications.

The NASA Ames' head-mounted display is a simple, low-cost design which uses

wide angle optics and monochrome liquid crystal display (LCD) screens mounted on

7

a motorcycle helmet. Head motions are detected through the use of six degree-of-

freedom tracking device mounted on the helmet (7:78).

1.5.5 University of North Carolina at Chapel Hill. Researchers at the Uni-

versity of North Carolina at Chapel Hill have built no less than fourteen virtual

environment systems (2:3). Two systems of particular interest are Molecular Mod-

eling Studies and the Virtual Building Walkthrough. Both of these systems were

originally designed for use without an HMD; they used a large screen video projec-

tor to display the desired scene. Only recently have the researchers begun to use a

head-mounted display with these systems (5:6).

1.5.6 Commercial Products. While all the previously described virtual en-

vironment display systems were developed mainly for research applications, several

companies are beginning to produce commercial products using virtual environments.

One such company is VPL Research of Redwood City, California. VPL's current

product, RB2 (Reality Built for Two), has a stereoscopic head-mounted display for

each user. The displays are constructed using color LCD displays and wide-angle

optics, all mounted inside the frame of a scuba diving mask. The computer generated

imagery is produced using four Silicon Graphics workstations, two for each user, one

for each eye (14:17,22).

Another system currently under development is the Cyberspace system from

Autodesk, Inc. The Cyberspace system uses the same head-mounted displays as

the VPL RB2 system, but the display scenes are generated on an 80386-based PC

equipped with special graphics accelerators. The cost of the Cyberspace system is

one tenth that of the VPL system (14:22).

1.6 Summary

Virtual environment display systems are not new. Dr. Ivan Sutherland was

experimenting with three dimensional displays as early as 1968. From his pioneering

8

work to today's commercial products, very little has changed. Advances in tech-

nology have made head-mounted displays lighter, easier to use, and now provide

color displays. Head tracking has become simplified through the use of the Polhe-

mus tracker. The computers driving the displays are more powerful and can draw

more complex scenes. Dr. Sutherland's Ultimate Display has yet to be created,

and this thesis effort will not create it either. This research will be limited to the

development of a head-mounted display and a software library to support virtual

environment applications.

1.7 Thesis Overview

This document is divided into four chapters. Chapter 1 has included a brief

introduction, review of current literature, and statement of the problem. Chapter 2

contains a description of the software library developed for this thesis. Chapter 3

describes the design and construction of the AFIT HMD-II. Finally, chapter 4 reports

the results of this effort, recommendations for further research, and possible future

applications.

There are three appendices to this document. Appendix A contains Unix-style

manual pages for all the routines in the VEDS software library. Appendix B is a

user's guide to the HMD-II. Appendix C describes the AFIT geometry file format.

9

II. Software Library

2.1 Introduction

The first of two major components of the VEDS is the software library used

to write virtual environment applications. The VEDS software library is divided

into two main sections, the input device handling routines and the graphics display

routines.

The input device routines handle the communication with the numerous input

devices supported by the VEDS. This communication involves initializing a device,

reading data from a device, and sending commands to a device. The input routines

are designed to operate in either a local or remote mode.

The graphics display routines allow the user to create their own virtual envi-

ronment. Support is provided in the library for both wireframe and filled objects

with hidden surfaces removed. A simple terrain model is used to provide a "floor"

for the virtual environment. In addition to the objects and terrain, pop-up menus

and a simulated hand model are provided for virtual environment interaction.

2.2 Input Device Software

2.2. 1 Requirements. The following requirements were identified for the input

device handling portion of the VEDS software library:

1. Standard Interface. A primary design goal for the input device handling portion

of the VEDS software library was to keep the programmer's interface consistent

across all devices. In addition, ease of use for the application programmer was

a prime concern. Three different programming interfaces were tried before a

satisfactory design emerged.

2. Device Support. There were several input devices that had to be supported by

the VEDS software library. These devices included:

10

(a) CH Products Microstick Joystick

(b) CIS Dimension Six Force-Torque Ball (Spaceball)

(c) Polhemus 3-Space Tracker

(d) VPL Dataglove

3. Remote Input. Another requirement was that the input devices should be

able to be connected to any machine on the AFIT graphics ethernet, and

the data made available to any other machine. This requirement would serve

two purposes. First, the input sampling could occur continuously, since the

data retrieval would be independent of the graphics processing running on a

separate machine. Second, running the input sampling on a separate machine

would allow a predictive tracking algorithm such as the Kalman filter (15:18)

to be run without degrading graphics performance. However, as a consequence

of running remote input, such predictive tracking has not been found to be

necessary.

2.2.2 Implementation. The following paragraphs describe the implementa-

tion of the the VEDS software library. The software was developed on a DEC Mi-

croVax 3 in the AFIT graphics lab. Each input routine was designed to be portable

across a wide range of machines. All input routines have been tested on a Sun-

4/260 and a Silicon Graphics IRIS 3130, as well as the Vax where the routines were

developed.

2.2.2.1 Standard Interface. The interface to the input devices was de-

signed to make it as simple to use and as device independent as possible. The

interface was also designed to mimic the Unix standard I/O interface. The primary

operations required, as in Unix, are to open the device, to read from the device, and

to close the device. Table 1 contains a list of the VEDS input routines.

11

void VEopen.xxx (char *ttyport, int speed);
void VE.init-xxx (device dependent options);
void VE.read-xxx (xxxData *data);
void VE-close-xxx ();
void VEwrite.xxx (char *buf, int len);
int VE-read-raw-xxx (char *buf, int len);
void VE-parse-xxx (xxxData *data, char *buf);

Figure 1. VEDS Input Routines

The VEDS software library works much like the Unix standard I/O library.

The device is opened using a VE.open-xxx library call with xxx replaced with the

desired device name. The device must then be initialized with the VE-init-xxx call.

The VEinitxxx function is the only one of the input routines which doesn't take

the same parameters for all devices; each device has its own initialization parameters.

Once the device has been opened and initialized, subsequent calls to the

routine VE-read-xxx will return the data from the device. The data is returned

in a device dependent structure described in the following sections. When input is

complete, the device should be closed using the VE-close-xxx function call.

Three additional routines are provided in the standard interface to the input

devices. These routines will not normally be used, but can prove useful in certain

circumstances. In fact, the preceding routines are built on top of these routines.

The routine VE-write-xxx permits communication with those devices which will

accept host commands. VE-read-raw-xxx reads the raw byte stream coming from

the device. The routine VEparse.xxx separates the raw byte stream from the device

into the device dependent structure.

2.2.2.2 Device Support. Four separate input devices are supported. They

are a CH Products Microstick Joystick, a CIS Dimension Six Force-Torque Ball, a

VPL DataGlove, and a Polhemus 3-Space Tracker. The methods by which each of

12

these devices is supported are explained in the following sections.

Joystick. The Microstick Joystick from CH Products (shown in

Figure 2) is a 2-D input device with a 4096 x 4096 pointing resolution and three

buttons (4). The joystick interfaces to the host computer system through a standard

RS-232 connection with an external +5V power source. Baud rates from 300 to 19200

are supported, and the joystick can be configured from the host or by DIP switches

located on the bottom of the unit. Output from the joystick is in an ASCII byte

stream as shown in Table 1.

Figure 2. CH Products Microstick Joystick

This ASCII byte stream is converted through the VE-parse-j oystick routine

into the data structure shown in Figure 3 and defined in the file joystick.h.

13

Table 1. Joystick Byte Stream

Delim Button1 Delim I Button2 Delim Button3 Ddlim X Value Delim Y Value Delim
S 01 1 0/1 1 0/1 1 X I Y CR/LF

typedef struct
{

short button;
short x;
short y;

} JoystickData;

Figure 3. Joystick Data Structure

CIS Dimension Six. The CIS Dimension Six force-torque ball (shown

in Figure 4) is a six degree of freedom input device combining the functions of a joy-

stick, a button box, and a dial box (6). The ball can be rotated about the three

primary axes and translated in three directions. Force sensors inside the ball register

the amount of force and torque being applied to the ball and send this information to

the host over a standard RS-232 interface. Eight buttons are provided. The Dimen-

sion Six can operate in either an ASCII or binary mode at several baud rates. The

VEDS software only supports the ASCII mode of operation for the Dimension Six.

The device can be configured from the host or through DIP switches located on the

bottom of the unit.

The values from the Dimension Six depend on the data format selected. Using

the SBYORCE format, translation and rotation values range from -127 to 128 and

a button press returns the button number three times positive, then three times

negative. In the SBNOLTAGE format, translation and rotation values range from

-999 to 999 and a button press changes the appropriate 0 to 1 in the string 00000000.

Output from the Dimension Six is in the format shown in Table 2.

14

Figure 4. CIS Dimension Six Force-Torque Ball

The ASCII byte stream from the Dimension Six is converted by the rou-

tine VE-parse-spaceball into the data structure shown in Figure 5 and defined

in spaceball.h.

Dataglove. The Dataglove (shown in Figure 6), manufactured by

VPL Research, Inc. of Redwood City, CA, is a "computer input device which con-

verts hand gestures and positions into computer-readable form" (27). The Dataglove

Table 2. Dimension Six Byte Stream

Mode - Xtrans I Ytrans Xtrans Xrot Yrot Zrot Button
FORCE ±128 ±128 ±128 ±128 ±128 ±128 ±8

VOLTAGE ±999 ±999 ±999 ±999 ±999 ±999 0/1 for each button

15

typedef struct
{

short xtrans;
short ytrans;
short ztrans;
short xrot;
short yrot;
short xrot;

short button;
} SpaceballData;

Figure 5. Dimension Six Data Structure

system consists of a lycra glove fitted with fiber optic cables, connected to a separate

control unit. Through the fiber optic cables, the control unit can sense flexion and

extension of the fingers, and can sense hand position through the use of a built-in

Polhemus tracker.

The Dataglove control unit is connected to a host system through either an

RS-232 or RS-422 cable. The unit can operate at several baud rates from 300 to

19200. There is a separate RS-232 "user port" through which the Dataglove control

unit can manipulate another device. All port settings are accomplished with DIP

switches.

The Dataglove is the only one of the supported input devi-es that does not

send ASCII data records, only binary records are transmitted. Using binary data

precludes the use of a unique delimiter in the output record since the delimiter may

appear in the data. Several unsuccessful attempts were made to write code that

would read the Dataglove correctly. Eventually, code was obtained from Simgraphics,

Inc., which properly read the Dataglove output records. The VEDS software interface

to the Dataglove makes calls to the Simgraphics Dataglove library.

Because the Simgraphics library is used for manipulation of the Dataglove,

16

Figure 6. VPL Dataglove

some VEDS routines for dealing with the Dataglove are inoperative. These routines

are VE.init-dataglove, VE.write.dataglove, and VE-read-.raw.dataglove. This

loss of functionality is due to limitations in the Simgraphics library.

The VEreaddataglove routine, however, works as expected and returns the

structure shown in Figure 7 and defined in dataglove.h.

Polhemus. The Polhemus 3-Space tracker (shown in Figure 8) is

a six degree-of-freedom input device that uses a low frequency magnetic field to

determine the position and orientation of a sensor in relation to a source or other

specified frame of reference (13:1-1). The Polhemus system consists of three parts:

a system electronics unit (SEU), one or two sources, and one to four sensors. The

source is fixed at a position near the center of the area of intended use. The area

17

typedef struct
{

Position pos;
Orientation or;
short fiex[NUMSENSORS];
Byte gesture;
char gesture-name[16];

} DatagloveData;

Figure 7. Dimension Six Data Structure

of use should be free of all metallic objects, since these warp the magnetic field

produced by the source and cause false readings (13:2-13).

The Polhemus connects to the host computer system through a standard RS-

232 connection. Baud rates from 300 to 19200 are supported; configuration is by

DIP switches on the back of the unit. Both ASCII and binary communication modes

are supported, however the VEDS software only supports the ASCII mode.

Numerous data items can be obtained from the Polhemus while it is in op-

eration. These items include cartesian coordinates, orientation angles, directional

cosines for X, Y, and Z, and quaternions. However, not all these data items need

be reported. The Polhemus is completely programmable from the host and the user

has complete control over the data items that are reported.

The code in Figure 9 is an excerpt from the VEDS routine VE£init-polhemus.

First, the Polhemus is cold reset. This ensures that all settings have been returned

to their default condition. Next the Polhemus boresight is reset to default, increment

is set to zero, ASCII format is selected, and the unit of measure is set to inches. The

operational envelope is then set to the maximum sixty five inches in all directions.

Next the operational hemisphere is set to have its zenith on the Z axis as shown in

Figure 10. Finally the output record is set to that shown in Table 3. The commands

18

Figure 8. Polhemus 3-Space Tracker

sent to the Polhemus are fully explained in (13).

Table 3. Polhemus Byte Stream

Position Orientation I X-amis cosines I Y-axis cosines Z-,axis cosines I Delim
X Y Z Azimuth Elevation RoU X IY Z IXIY I Z X IY Z ICR ILF

This data record from the Polhemus is parsed by the VE.parsepolhemus

routine into the data structure shown in Figure 11 and defined in polhemus.h.

The Polhemus can operate in either a polled or continuous mode. Using polled

mode requires that the timing between the poll and the receipt of poll be precise. If a

read of the data takes place before data has been received, the read will return invalid

data. If the read takes place too late, time will be wasted that could have been spent

19

buf [0] = 1-I * Cold reset *
VE-.write...polhemus(buf, 1);
sleep (6);

strcpy(buf, "bl\rIO\rFcU"); /* Reset boresight,
VE-.write-.polhemus(buf, strlen(buf)); Increment to 0,
sleep(1); ASCII format,

unit inches */

strcpy(buf, "V1,65,65,65,-65,-65,0\r"); /* Define envelope *
VE-.write...polhemus(buf, strlen(buf));
sleep (l)

strcpy(buf, "H1,O,O,1\r"); /* Define hemisphere *
VE-.write-.polhemus(buf, strlen(buf));
sleep(1);

/* Set output record format to the following:
1* 2 = Cartesian Coordinates (X, Y, Z)
1* 4 = Orientation Angles (azimuth, elevation, roll) *
/ 5 = X-axis direction cosines (X, y, Z)

6 =6 Y-axis direction cosines (x, y, z) *
/* 7 = Z-axis direction cosines (x, y, z)

1* 1=CR, LF

strcpy(buf, "02,0,4,0,5,0,6,0,7,1\r");
VE..write-.polhemus(buf, strlen(buf));
sleep(1);

Figure 9. Poihemnus Initialization Code

20

Polhemus
SSource

Active

Hemisphere Z

Figure 10. Polhemus Field Orientation

typedef struct
{

Position pos;
Orientation or;
DirectionCosine xdc;
DirectionCosine ydc;
DirectionCosine zdc;

} PolhemusData;

Figure 11. Polhemus Data Structure

21

doing something else. The solution to the problem is to use continuous mode. The

VE-init.polhemus routine switches the Polhemus into continuous output mode.

2.2.3 Remote Input. The ability to have the input devices physically attached

to a machine other than the one driving the graphics display was a fundamental re-

quirement for the VEDS input routines. By devoting an entire machine to sample

the input devices, it was possible to place all the input devices into a continuous

output mode and still be able to sample fast enough. In addition, this "input ma-

chine" could support many devices at one time, while a machine having to do the

graphics processing at the same time might become overloaded.

The remote input code was developed using the client/server model as de-

scribed in (11:17). The machine with all the input devices attached would act as

the server, while the machine handling the graphics processing would be the client.

To implement such a model, three facilities were needed. The first was a commu-

nications medium through which the client and server could exchange information.

The second was a server program that would continuously sample the input devices

and watch for data requests from the client processes. The third was a set of user

callable client routines which would retrieve data from the server.

All machines in the AFIT graphics lab are attached to the lab's ethernet local

area network. This network provided the perfect communications medium for the

implementation of the remote input facility. The network, operating at ten megabits

per second, provided more than enough bandwidth for the small data records being

transmitted.

The server and client portions of the VEDS were implemented using the Berke-

ley interprocess communication (IPC) services in the Unix operating system. The

reader is referred to (11:17) for an in-depth discussion of the Unix IPC facilities.

22

2.2.3.1 Server. The server is divided into three main parts: (a) the

server main program, (b) the device reader, and (c) the network reader.

Referring to Figure 12, when the server starts up, the configuration file is read

in. If no errors are found in the configuration file, a shared memory segment (for

subprocess communication) is opened. Then, for each attached device, a new device

reader process is started which opens the device (if possible) and begins sampling

data. As the data is read from the input devices, it is written into the shared

memory segment. Once the device reader tasks have been spawned, the main server

waits for connection requests from client programs. Once a connection request is

received from a client, a network reader process is started which listens for data

requests from the client. Upon receipt of a data request, the network reader process

reads the current device data record from shared memory and transmits it to the

client. After spawning the network reader process, the main server process returns

to waiting for client connection requests. Thus, to serve on client program using one

input device, three server processes are required, the main server process, the device

reader process, and the network reader process. The current implementation limits

the number of clients to five and the number of input devices to four (only one of

each supported input device).

read configuration file
open shared memory segment
spawn appropriate device reader tasks
while (not done)

wait for client connection

spawn network server task

Figure 12. Server Main Task Pseudocode

The server program uses a configuration file to specify which input devices are

to be used. This file has the format shown in Table 4. As an example, specifying

23

Table 4. Server Configuration File Parameters

Keyword Path Baud Rate
joystick /dev/ttyXX 300 - 19200
spaceball /dev/ttyXX 300 - 19200
polhemus /dev/ttyXX 300 - 19200
dataglove /dev/ttyXX 300 - 19200
calibration -file path/filename N/A
gesture-file path/filename N/A

"polhemus /dev/tty02 19200" indicates that the Polhemus tracker is connected to

/dev/tty02 running at 19200 baud.

The keywords calibration-file and gesture.file are specific to the Data-

glove and should be specified whenever the Dataglove is used, unless the defaults

are acceptable. The calibration-file should be the name of a hand calibration

file generated with the Simgraphics Dataglove Test and Calibration program. This

allows the Dataglove to be tailored to each user's hand. The gesture-file should

be the name of a hand gesture file generated with the Simgraphics Gesture Editor.

2.2.3.2 Client. The VEDS remote input routines available to client pro-

grams were designed to parallel the input routines for each of the input devices. The

semantics of the remote input routines remain the same as those for using the in-

put devices directly. Figure 13 shows the remote input routines available to client

programs.

void VE-open remote(String host);
void VE -read -remote(Byte command, xxxData *data);
void VE -read-raw -remote(Byte command, Byte *buf, int size);
void VE-close -remote);

Figure 13. Remote Input Routines

24

Table 5. Client Data Retrieval Commands

Command Action
SENDDATAGLOVE Retrieve Dataglove Data
SEND-JOYSTICK Retrieve Joystick Data
SENDPOLHEMUS1 Retrieve Polhemus Data for Sensor 1
SENDPOLHEMUS2 Retrieve Polhemus Data for Sensor 2
SENDSPACEBALL Retrieve Spaceball Data

VE.open.remote is used to open a network connection to the host machine

running the input server program as described in Section 2.2.3.1. VE-read-remote

causes a request for data to be sent to the network reader task on the server ma-

chine. The data record that will be sent by the server is based on the command

argument to VE-read-remote. The available commands are shown in Table 5. The

VE-close-remote routine causes the server process to exit and closes down the net-

work connection to the server host. As a result, when multiple clients are used,

the first to call VE-close-remote will cause all server processes to exit, in effect

disabling all clients.

2.3 Graphics Display Software

The second major portion of the VEDS software library is the graphics display

routines. The graphics routines allow the user to build a virtual environment by

creating objects which respond to the user's input.

2.3.1 Requirements. The requirements for the graphics display portion of the

VEDS software library were simple given sufficient graphics capability, but proved

much more difficult given the graphics hardware available for this project. The

requirements were:

1. Provide a library of software routines to permit the construction and display of

a virtual environment. The library should provide as a minimum the following

25

functions:

(a) Build and display a wireframe representation of any arbitrary geometric

object.

(b) Build and display a filled (with hidden surfaces removed) geometric object.

(c) Permit arbitrary translation, rotation, and scaling of both type of objects.

(d) Provide a pop-up menu system which can exist within the virtual envi-

ronment.

2. Be highly functional and easy to use. Only a few library calls should be nec-

essary to create a virtual environment.

3. Provide an adequate update rate for the displayed image. Adequate will be

defined as 10 frames per second.

2.3.2 Virtual Environment Objects. The VEDS graphics routines as based

on the display of objects, which can be any convex polygon or convex collection of

polygons. Each object within VEDS maintains a state which contains such items as

its geometric description, color, current transformations, etc. This state information

is contained in a VEbject structure shown in Figure 14.

2.3.2.1 Object Hidden Surface Elimination. For filled objects, hidden

surfaces must be removed for the displayed object to look correct. There are several

methods for properly removing hidden surfaces from an object (24).

The VEDS library uses a technique known as the Binary Space Partitioning

(BSP-tree) algorithm first introduced in (8) and later refined in (9). The BSP-tree

works by exploiting the principle of separating planes. Thus, given a plane in a three

dimensional scene, no polygon on the viewer's side of the plane can be obscured be

a polygon on the other side of the plane. Using this simple notion, the BSP-tree

algorithm builds a binary tree of polygons from the original polygon list. Once the

26

typedef struct
{

Colorindex color;
Boolean visible;
Position position;
SmallPosition rotation;
SmallPosition scale;
float distance;
Position centroid;
Position bb[BBOXSIZE];
Displaytype type;
Object wire;
TreeNode *bsp;
Matrix matrix;
Matrix inverse-matrix;

} VEObject;

Figure 14. Virtual Environment Object

tree has been constructed, image generation is a matter of traversing the tree in the

correct order while painting each polygon encountered during the traversal (9:66).

2.3.2.2 Object-to-Object Visibility. One of the major drawbacks of the

BSP-tree is that is is "limited to static world models (since whenever the world

model changes, the preprocessing data restructuring step must be invoked)" (9:65).

For the VEDS, a modification to the use of the BSP-tree has been made.

Instead of using all the objects in the virtual environment to generate the BSP-tree,

each object has its own BSP-tree description. This eliminates having to re-generate

the tree whenever an object moves, but does not preclude one object from intersecting

another.

To solve the object-to-object visibility problem, another method was devel-

oped. The basic idea is to know the relationship of each object to the viewer. In

other words, if the distance to each object from the viewer can be determined, then

27

the objects can be displayed in the correct order. The distance from the viewer to an

object is calculated to the object's centroid. The objects are then sorted by distance

and displayed in a farthest to nearest order.

Note that this method does not completely solve the object-to-object visibility

problem, but is a close approximation. It is possible for objects to intersect even

though they are correctly sorted by distance. However, testing has shown that in

the interactive virtual environment, this approximation is not a problem.

2.3.2.3 Filled Object Movement. The BSP-tree algorithm was origi-

nally developed for the situation "where the world model changes less frequently

than the viewpoint or direction of view of the observer" (9:65). However, in a vir-

tual environment, this situation may not always exist; it would be nice to pick up a

virtual object and move it freely, and still have the hidden surface problem solved.

The BSP-tree can still be used in this situation with slight modification. If an

object moves, it is as though the viewer's eye were moved in the opposite direction.

For instance, in Figure 15, if the cube shown in (a) is rotated 900 about the Z axis

and the viewer doesn't move, then the green (G) face will now be visible as in (b).

However, the same effect can be accomplished by moving the viewer -90 about the

Z axis as shown in (c).

This principle is exploited in the VEDS graphics routines to allow arbitrary

movement of objects described by a BSP-tree. Since a BSP-tree object must remain

stationary, for the object to appear to move, the viewer must move in the opposite

direction. This can be accomplished by transforming the viewer's position by the in-

verse of the object's transformation. The object's transformation can be represented

by a 4 x 4 matrix (M), so the new viewer's position (x y z 1] can be computed as

shown in Equation 1.

[X y z 1] = [X'y' z' 1][M]- (1)

28

z z

B B

R G

X (a) (b)

z

B

R

X(c)

Figure 15. Filled Object Movement

2.3.2.4 Building Objects. Objects used in the virtual environment are

built from a geometric description contained in an AFIT geometry file described in

Appendix C. A call to the routine VE-build.object will build both a wireframe

and filled description of the object.

Building a virtual environment object (VEbj ect) from its geometric descrip-

tion is a two pass process. First, the geometry file is read in, and a linked list of

polygons is built. As the list is being built, a Silicon Graphics obj ect is created using

the move and draw commands from the Silicon Graphics graphics library. Once the

linked list has been built, the list is passed to the VEDS routine -VE-build-tree

which creates the BSP-tree description of the object.

2.3.3 Miscellaneous. In addition to the virtual environment objects, three

additional graphical entities are provided by the VEDS graphics routines. These

include a simulated hand model, pop-up menus and information panels, and terrain.

29

Figure 16. Simulated Hand Model

Each of these is described in the following sections.

2.3.3.1 Hand. When using the VPL DataGlove it is convenient to see

the current position and orientation of the hand in the virtual environment. To do

this, a simulated right hand is modeled using polygons and displayed in wireframe.

The hand responds to position, orientation, and finger flex data from the DataGlove.

An example of the hand in use in a virtual environment is shown in Figure 16.

2.3.3.2 Menus and Information Panels. The VEDS library provides

pop-up menus and information panels. Menus provide for user choice selection, while

information panels are used only for displaying textual information. These menus

and panels are created within the virtual environment and may be manipulated just

30

like any other object in the environment. Menu items may be highlighted and menu

picks made as the user desires.

Text within the menus and information panels is created by drawing up to six

vectors for each character. This vector character set was designed on graph paper by

the author. The per character vector count was held at six to maintain a reasonable

update rate while at the same time providing a readable character set. The character

set is limited to the uppercase letters, the numbers, and the space character. Lower

case letters are mapped to uppercase. Undefined characters are mapped to the space

character.

Menus exist for the duration of the program in which they are us. , ,'nd may

be used any number of times. Information panels exist only for as long as they are

displayed. Subsequent requests for an information panel destroys the original and a

new one is created.

2.3.3.3 Terrain. The display of terrain is a complex problem that has

been the subject of much research (17). For this thesis, several methods for displaying

terrain were investigated.

The first method investigated for displaying terrain was the use of a multiple

level of detail terrain database. This involves having multiple terrain databases, only

one of which is used at any one time. Database selection is based on the viewer's

altitude above the terrain. A terrain model with more detail will be displayed when

the viewer gets closer to the terrain. This method of terrain display was found

unsuitable for this thesis because of the time required to create the terrain database

and the need for special modeling tools (17).

Another method investigated was one similar to that used in the Fiber Optic

Guided Missile (FOG-M) simulator (19). In FOG-M, the terrain is divided into grid

squares. Each terrain square in the grid is treated as a separate object. These terrain

objects are then sorted by distance from the viewer, and displayed in a back to front

31

order. Since a similar method is used in VEDS for object display, this seemed like a

usable approach. However, one key question that must be answered is "how many

grid squares should be used?" If the grid is too fine, the update rate will be slow. If

the grid is not fine enough, objects will "disappear" behind grid squares as a result

of the object sort. This method was also found unsuitable because of the specific

nature of its application. The technique was not general enough for use in the VED.

The VEDS library provides only the most simplistic representation of terrain.

This simplistic representation is one polygon of a user specified size and color with a

10 x 10 wireframe grid superimposed on the polygon. This polygon provides a "floor"

for the virtual environment and should be sufficient for the envisioned applications

of the VEDS.

2.4 Summary

The VEDS software library consists of two main parts, the input device routines

and the graphics display routines. The routines for handling the input devices are

designed for ease of use and consistency of interface. The input routines permit both

local and remote operation of all the supported input devices. The local routines

permit greater control over the device at the expense of the overhead of handling

all the I/0. Remote access to a device frees the client from constantly reading the

device and possible suffering a degradation in performance.

The graphics display routines are designed to permit easy construction of a

virtual environment. There are routines for building and displaying virtual objects

and terrain. Both wireframe and filled objects can be built and display with hidden

surface properly removed.

32

III. Head Mounted Display

3.1 Introduction

A head-mounted display is a device worn by the user which presents an image

to the eyes based on where the person is looking. The image the user sees could be

either computer generated or live video, but the illusion of reality is created when

the scene changes in response to the user's head movement.

The head-mounted display is the heart of the Virtual Environment Display

System. Through the use of the head-mounted display, the VEDS user can become

totally immersed inside the virtual world, making it that much more real.

The head-mounted display constructed for this thesis is the second generation

of displays made at AFIT. The first, HMD-I, was constructed in 1988 by Captain

Bob Rebo, and is briefly described in Section 3.2. The second generation display

constructed for this thesis will be known as HMD-II.

The HMD-II is constructed from several major components: a set of high

quality optics, miniature LCD color televisions, a scuba mask, and straps.

3.2 HMD-I

3.2.1 Description. For his master's thesis, Captain Bob Rebo designed and

built the first generation of head-mounted displays at AFIT. Captain Rebo's HMD

was built using a bicycle helmet for support, two small color LCD televisions for

image display, and crude optics for display visibility. Head position was tracked

using a Polhemus 3-Space tracker. See (15) for a complete description of HMD-L.

3.2.2 Problems. Though HMD-I functioned adequately, it suffered from sev-

eral drawbacks. The first drawback was the weight of the system. The bicycle

helmet and the frame used to hold the televisions, plus the weight of the televisions

33

Figure 17. HMD-I

themselves made HMD-I uncomfortable to wear for more than a few minutes at a

time. The second drawback was the optics which allowed the wearer to focus on the

screens. Captain Rebo used two pair of eyeglasses, with +10 and +12 diopter lenses,

to permit focus down to the small distance required. However, since the television

screens he used were too big, Fresnel press-on prisms were required to see the screens

which were positioned at angles to the eyes. The prisms blurred the displayed image

considerably, causing eye strain and greatly reducing the effectiveness of the image.

The third drawback was the one-size-fits-all limitation of the helmet; at least one

prospective wearer was unable to use the system because the helmet was too small.

See Figure 17 to better understand the design of HMD-I.

34

3.3 HMD-II

3.3.1 Requirements. Using Captain Rebo's HMD-I as a starting point and

attempting to avoid the problems with the original head-mounted display, require-

ments were developed for the new HMD-II.

1. Improve the image quality. The image quality inside the HMD-II would never

rival that of a computer monitor, or a television for that matter, but a display

was needed that was pleasant to use for a prolonged length of time.

2. Reduce the total system weight. The HMD-II should be comfortable to wear

for extended periods of time, at least thirty minutes.

3. Make HMD-II more adjustable and easier to wear. The display should be easy

to don and remove, and should fit everyone.

3.3.2 Design. Using the three requirements as a basis for the design, work

was begun to formulate several prototypes. Improving the image quality was the

overriding concern in the development of HMD-II, as poor image quality was the

foremost failing of HMD-I.

The main cause of the poor image quality in HMD-I was the Fresnel press-on

prisms. The prisms were necessary because the LCD screens could not be aligned

directly in front of the eyes (see Figure 18). The Fresnel prisms work well, are

lightweight and easy to use, but cause a great deal of optical distortion. To improve

the image quality, the use of press-on prisms would have to be changed.

Another cause of the poor image quality was the optics used in HMD-I. Captain

Rebo used two pair of ordinary eyeglasses fitted with +10 and +12 diopter lenses.

Two pair were required to get proper magnification. However, using two pair also

distorted the visible image to some extent. To eliminate the distortion, a new set of

optics would have to be used.

35

Screens

Lenses Prisms

Eyes

Figure 18. Fresnel Press-on Prism Use in HMD-I

Working solely to improve image quality, three initial designs were proposed.

The first two were attempts to eliminate the optics from the system altogether (see

Figures 19 and 20). By using a series of mirrors, the effective distance from the

eye to the screens could be lengthened, and the optics eliminated. There were at

least two major drawbacks to each of these designs. First, the requirement to reduce

the system weight would not be met. The mirrors required by the new design, in

combination with the full helmet, could be too heavy for extended use. Second, each

design still used a helmet as the mounting platform, which would again limit its use

to only those persons with the proper head size.

Another drawback to the designs shown in Figures 19 and 20 would be the

narrow field of view (FOV) they would provide. Though narrow FOV displays have

been used before, and with great success, it was preferred that HMD I, like HMD-I,

would have a wide FOV (25). The wide FOV gives the wearer the illusion of being

36

~Eyes<

Mirrors

Helmet

Figure 19. Side View of the First HMD-II Design

immersed in the virtual environment.

Since a wide FOV was desired, a different type of designed was called for. The

optics could not be eliminated if the wide FOV was to be supported, so a new set of

optics was required. Drawing on the virtual environment work done at NASA Ames,

a set of optics designed by Eric Howlett and built by Pop-Optix Labs were chosen

as the optics for HMD-II (7). See Section 3.3.3.1 for a complete description of the

optics.

Using the LEEP optics, as they are called, satisfied the requirement for an

improved image display. To satisfy the requirement to reduce the weight of the

system, the helmet was removed from the design and replace with lightweight support

straps. The design now resembled a pair of ski goggles as shown in Figure 21. Using

this goggle-type design would permit greater adjustability than the helmet and allow

more people to use it.

37

Mirrors

Screens Helmet

Figure 20. Top View of the Second HMD-II Design

3.3.3 Components. Several major components were used in the construction

of the HMD-II. These include new optics, LCD color televisions, and the face seal

from a scuba diving mask. Each of these components are described in the following

sections.

3.3.3.1 Optics. The optics used in the AFIT HMD-II were designed by

Eric Howlett and built by Pop-Optix Labs of Waltham, MA (see Figure 22). They

were originally designed for use in a stereo slide viewer, but have been used in head-

mounted displays before (7:78). The optics have a focal length of approximately 2.5

inches, and a horizontal and vertical field-of-view of 120 degrees.

Though they provide excellent image quality, the optics exhibit considerable

pin-cushion distortion as shown in Figure 23. This distortion can be compensated

for in software by pre-distorting the image, but this can be complicated when using

38

Straps Screens

Figure 21. Final HMD-II Design

geometric primitives on a raster system, such as the software for this thesis does.

3.3.3.2 LCD Televisions. The display screens used in HMD-II are Sony

FDL-330 color monitors. The FDL-330 is a three component monitor system with

separate detachable power pack, tuner, and monitor sections (20). The monitors

use active matrix thin film transistor technology to drive the liquid crystal display

screens. The screens are 2.7 inches diagonal measure with over 86, 000 pixels arranged

in a 360 x 240 grid. A fluorescent backlight is used to brighten the image. The

monitor section can accept direct video input so the tuner section has been removed

to save weight. The Sony FDL-330 is shown in Figure 24.

39

,m

Figure 22. LEEP Optics

3.3.3.3 Face Seal. For the system to work most effectively, the system

must seal tightly against the wearer's face for a comfortable fit and total light block-

age. The black silicon rubber skirt from a scuba diving mask works well for this

application.

3.3.4 Construction. The construction of HMD-II involved much more than

collecting a few components and connecting them together. Modifications to some

components were required and all the pieces had to be integrated into a working,

usable system.

3.3. 4.1 Television Modification. The Sony FDL-330 monitors were al-

most perfect for this application. Only two minor modifications were necessary.

40

Figure 23. Pin-cushion Distortion of LEEP Optics

Due to the close proximity the screens were to each other, the audio/video input

jack had to be moved from the side of the case to the bottom. Instead of moving

the actual plug, the connector was bypassed by a wire through the bottom of the

case. The +6.5V power input on the power pack presented the same problem as the

audio/video input and was solved in the same manner.

3.3.4.2 Optics Modification. The LEEP optical elements are made of

plastic and housed in a plastic case. They do, however, have a metal frame around

them for mounting in the stereo viewer (see Figure 22 on Page 40). This metal

frame, while adding unwanted weight, also interferes with the magnetic field of the

Polhemus source, causing false readings. In HMD-II the frame has been removed

and the optics incorporated directly into a fiber glass mount.

One other significant adjustment has been made to the LEEP optics. Since

41

* ~ ~ .~. - ' .- .~.. ..a. .

Figure 24. Sony FDL-330 Color LCD Monitor

the Sony monitors are slightly too big to align perfectly with the central axis of the

LEEP optics, Fresnel press-on prisms are used to adjust the line of sight. Though

the Fresnel prisms caused a great deal of distortion in the optical system of HMD-I,

the prisms actually improve the image of HMD-II. The LEEP optics are so good,

and the screen image magnified so much, that each individual screen pixel can be

seen. The screen appears as a grid of disconnected pixels instead of coherent image.

The prisms act as diffusers, smearing the image slightly, and making the image more

coherent. In fact, VPL uses diffusers in their Eyephone head-mounted display for

the same reason (10).

42

3.3-4.3 System Integration. Figure 25 shows the completed system. The

scuba mask skirt has been attached to the fiber glass frame holding the optics. The

Sony monitors are mounted on rails and can slide horizontally. The horizontal posi-

tion of the screens can be changed by simply sliding the TVs outward. The horizontal

movement of the screens permits adjustment for persons with different inter-pupilary

distances. This is necessary so the two images will converge into one within the

binocular overlap area. Vertical motion is not adjustable and has not found to be

necessary. The whole system is enclosed in a removable fiber glass shell.

The system, when being worn, is held in place by three adjustable straps, one

over the top of the head, and one to either side (see Figure 26). The straps are

attached to a pad at the back of the head. The pad is cushioned and filled with lead

shot to act as a counterweight. The strap across the top of the head has a Velcro

mount for the Polhemus sensor, and mounts for the video and power cables to drive

the system. The cables terminate in a 10-pin connector, which allows the system to

be disconnected from its drive hardware.

3.4 Summary

The requirements for AFIT HMD-II, with respect to AFIT HMD-I, were to

(1) improve image quality, (2) reduce system weight, and (3) make it easier to use.

These requirements have been met. Using the LEEP optics, even with the press-on

prisms, have greatly improved the image quality. The new Sony monitors have also

helped because though they have the same pixel resolution as the Sharp TVs from

HMD-I, they have a smaller screen resulting in an effective higher resolution. By

removing the helmet from the system, total weight has been reduced. Even more

weight could be removed if the television electronics could be separated from the

display screens. The system is easy to use; slip it on, tighten the straps, and the

system is ready to use.

43

Figure 25. HMD-II

44

Figure 26. HMD-II In Use

45

IV. Summary

4.1 Results

As stated in the origindl scope of this thesis, the goal for this effort was to

develop a 3-D virtual environment display system. The system would consist of

a library of software routines specifically tailored for use in a virtual environment

system, and a head-mounted display for placing the user in the virtual environment.

That goal has been accomplished and the system works well, despite some minor

problems.

4.1.1 Software. The following two sections describe the results of this thesis

with regard to the VEDS software library.

4.1.1.1 Input Device Routines The original requirements for the input

device routines were (a) to provide a standard interface across all devices, (b) to

support four unique input devices, and (c) provide support for remote input. All of

these requirements have been met.

The input routines for all devices have the same syntax and programming

usage. Support is provided for a CH Products Microstick Joystick, a CIS Dimension

Six Force-Torque Ball, a Polhemus 3-Space Tracker, and a VPL DataGlove. Each

of these devices is also supported in a remote input mode; the devices need not be

attached to the machine on which they are used.

4.1.1.2 Graphics Routines The original requirements for the graphics

routines were (a) provide a library of routines to permit the construction and display

of a virtual environment, (b) make t1he library easy to use and highly functional, and

(c) maintain an update rate of ten frames per second. All these requirements have

been met to a certain degree.

46

The graphics library contains enough functionality to build and display a vir-

tual environment. The virtual environment is currently limited to wireframe and

filled convex polygonal objects and a simple terrain model. These are sufficient to

construct a simple virtual environment. The library has a high degree of functional-

ity; as few as six library calls are necessary to build and display a virtual environment.

The update rate is highly dependent upon the number of graphics primitives being

displayed and can fluctuate greatly.

4.1.2 Head-Mounted Display. The original requirements for the HMD-II,

with respect to the HMD-I, were (a) to improve the image quality, (b) to reduce

the system weight, and (c) make the system easier to use and wear.

The results here are a mixed bag. The new LEEP optics have definitely im-

proved the image quality over those in the HMD-I system, but the quality is not

great. The optics magnify so well that each pixel on the screen is visible. The use

of the press-on prisms help to blur, and improve, the image, but higher resolution

screens are the correct solution. The system weight has been reduced some, but has

been shifted completely to the front of the head; this requires the use of a coun-

terweight to help balance the load. The system weight still needs to be reduced

further.

4.2 Recommendations

No project is ever perfect, and this one is no exception. Though the original

goal for the thesis has been met, much more remains to be done, and some things

could be done differently.

4.2.1 Software. The following are recommended changes to the VEDS soft-

ware library as it now exists.

47

1. Avoid the use of the Simgraphics code for handling DataGlove input. Though

the DataGlove reading code works fine in its present configuration, some per-

formance improvements could be gained by bypassing the Simgraphics library

and talking directly to the DataGlove. This would also avoid having to run

the Simgraphics DataGlove server, thus reducing the number of executing pro-

cesses.

2. Improve the handling of button presses better. This might involve using a

queue or software interrupt to insure that button presses are not missed. It is

currently possible to miss a button press if it occurs between sampling events.

3. Provide a better terrain model. This might involve implementing a multi-level

terrain database. Perhaps the same technique used in flight simulators for

personal computers could be used.

4. Replace software with hardware. A computer capable of real-time Z-buffering

could eliminate all the problems in the object display routines by completely

solving the hidden surface problem.

4.2.2 Head-Mounted Display. The following are recommended changes to the

HMD-II as it currently exists, and some suggestions for new display technology.

1. Further reduce the weight. The LCD screens must be removed completely from

their electronics, and the electronics removed from the head-mounted display.

The fiber glass shell holding the TVs is too bulky and heavy; a new lighter

weight design will have to be devised.

2. Remove the prisms from the system. To do this will require either smaller TVs

or custom made LCDs with two screens on one substrate. The smaller TVs

are undesirable because they will not completely fill the field-of-view. However,

the custom made LCDs will be prohibitively expensive.

48

3. Explore new display technologies. Display devices such as the Private Eye (16)

and the Tektronix stereo display (26) should be investigated as alternatives to

the head-mounted display.

4.3 Future Applications

Potential applications for virtual environment technology are almost limitless.

Two specific applications being investigated at AFIT are (a) the replay of aircraft

mission data, allowing the pilots and com..aanders to review the mission (12), and (b)

the use of a virtual environment display for battle management and mission planning

(28). As described in Section 1.5, many other applications of virtual environment

displays have already been discovered. These range from flight simulators to molec-

ular visualization to architectural walkthroughs to remote robotic control. And this

appears to only be the tip of the iceberg for virtual environments. Medical imaging

and air traffic control are already emerging as possible uses for a virtual environment

system, and the potential for personal entertainment systems is unlimited.

49

Appendix A. Manual Pages

On the following pages are the Unix manual page descriptions of the software

routines available in VEDS. Each page contains the C language declaration of the

function, a brief explanation of what it does, and any special use guidelines.

50

DATAGLOVE(LOCAL) Virtual Environment Manual DATAGLOVE(LOCAL)

NAME

VE-close dataglove, VEinit-dataglove, VE-open dataglove, VE.parse.dataglove,
VE -read -raw dataglove, VE -read dataglove, VE-write dataglove - VPL Data-
Glove Input Routines

SYNOPSIS

#include <VE.h>
void VE-close-dataglove()
void VE .init dataglove (calibration -file, gesture-file)
String calibration..file;
String gesture-file;
void VE-open-dataglove(ttyport, speed)
String ttyport;
int speed;
void VE-parse-dataglove(dd, buf)
DatagloveData *dd;
char buf[];
int VE-readraw.dataglove(buf, len)
char buf[];
int len;
void VE-read_dataglove(dd)
DatagloveD '- *dd;
void VE.write-dataglove(buf, len)
char bufl];

DESCRIPTION

These routines are used to interact with the VPL DataGlove.
VE_ close- dataglove closes the tty port to the DataGlove. Closing a port

not previously opened has undefined results.
VE-init-dataglove initializes the DataGlove. The calibration-file parameter

is a String containing the null-terminated name of a DataGlove calibration file
created with the Simgraphics DataGlove Test and Calibration software. If cal-
ibrationfile is NULL, a fast calibration will be done. Fast calibration requires
that the hand be held in three different positions while the DataGlove control
unit samples the glove. The gesture-file parameter is a String containing the
null-terminated name of a DataGlove gesture file created with the Simgraphics

51

DATAGLOVE(LOCAL) Virtual Environment Manual DATAGLOVE(LOCAL)

DataGlove Gesture Editor. If gesture-filc is NULL, no gestures can be recog-
nized. Be sure the DIP switch settings on the back of the DataGlove control
unit are set to 19200 baud, 2 stop bits, and RS-232 interface.

VE-open.dataglove opens the DataGlove for use. The DataGlove should
be connected to the tty port specified by the null terminated string ttyport.
The baud rate is specified by the speed parameter. The baud rate should
be specified by a capital "B" followed by the baud rate as in "B9600". See
the file /usr/include/termio.h for a list of the baud rate codes. Be sure
that the selected speed matches the DIP switch settings on the back of the
DataGlove control unit. Note: the speed parameter is currently ignored since
the Simgraphics DataGlove software used to read the glove only supports 19200
baud.

VE-parse-dataglove parses the raw data stream from the DataGlove into
the DatagloveData structure pointed to by dd. The raw data record should be
in buf, exactly as returned from VE.read-raw-dataglove.

VE-readraw-dataglove reads data directly from the DataGlove placing it in
the String pointed to by buf. The length of the data stream to read is specified
by the parameter len. This routine will normally not be used.

VE.read-dataglove essentially runs VE-readrawdataglove and VE-parse-dataglove
to fill the DatagloveData structure pointed to by dd with the most current data
from the DataGlove. This is the normal way to get information from the Data-
Glove.

DATA TYPES

#define NUMSENSORS 10

typedef struct
{

SmallPosition pos;
Orientation or;
short flex[NUMSENSORS];
Byte gesture;
char gesture-name[16];

} DatagloveData;

SEE ALSO

DataGlove Programmer's Toolkit Programmer's Guide, DataGlove Gesture
Editor User's Manual, remote(LOCAL), server(LOCAL)

52

DATAGLOVE(LOCAL) Virtual Environment Manual DATAGLOVE(LOCAL)

AUTHOR

Bob Filer

53

JOYSTICK(LOCAL) Virtual Environment Manual JOYSTICK(LOCAL)

NAME

VE-close-joystick, VEinit-joystick, VE-open-joystick, VE.-parse _joystick, VE-read-raw-joys
VEread-joystick, VE-write-joystick - CH Products Microstick Joystick Input
Routines

SYNOPSIS

#include <VE.h>
void VE-close -joystick()
void VE-init-joystick (mode)
Byte mode;
void VE.open.joystick(ttyport, speed)
String ttyport;
int speed;
void VE -parse -joystick(jd, buf)
JoystickData *jd;
char buf[];
int VE -read.-raw-joystick(buf, len)
char buffl;
int len;
void VE-read -joystick(jd)
JoystickData *jd;
void VE-write-joystick(buf, len)
char buf[];

DESCRIPTION

These routines are used to interact with the CH Products Microstick Joystick.
VE-close-joystick closes the tty port to the Joystick. Closing a port not

previously opened has undefined results.
VE-init-joystick initializes the Joystick to report data in a the format speci-

fied by the mode parameter. By default, the Joystick uses the JOYRATEABS
data format. Five additional data formats are available as shown in the fol-
lowing table.

JOYRATEABS Rate + Absolute Movement
JOYZOOMABS Zoom + Absolute Movement
JOYUNM ABS Unmapped Absolute Movement

54

JOYSTICK(LOCAL) Virtual Environment Manual JOYSTICK(LOCAL)

JOY-ZOOM Zoom Movement
JOY-RATE Rate Movement
JOY-ABSOLUTE Absolute Movement

Be sure the DIP switch settings on the Joystick match the mode selected. See
the Microstick User's Guide for a full explanation of the six types of movement.

VE-open-joystick opens the Joystick for use. The Joystick should be con-
nected to the tty port specified by the null terminated string ttyport. The
baud rate is specified by the speed parameter. The baud rate should be spec-
ified by a capital "B" followed by the baud rate as in "B9600". See the file
/usr/include/termio.h for a list of the baud rate codes. Be sure that the
selected speed matches the DIP switch settings on the bottom of the Joystick.

VE-parse-joystick parses the raw data stream from the Joystick into the
JoystickData structure pointed to by jd. The raw data record should be in buf,
exactly as returned from VEread.raw-joystick.

VE-read-raw-joystick reads data directly from the Joystick placing it in the
String pointed to by buf. The length of the data stream to read is specified by
the parameter len. This routine will normally not be used.

VE.read-joystick essentially runs VE-read-raw-joystick and VE-parsejoystick
to fill the JoystickData structure pointed to by jd with the most current data
from the Joystick. This is the normal way to get information from the Joy-
stick.

DATA TYPES

typedef struct
{

short button;
short x;
short y;

} JoystickData;

SEE ALSO

CH Products Microstick User's Guide, remote(LOCAL), server(LOCAL)

AUTHOR

Bob Filer

55

POLHEMUS(LOCAL) Virtual Environment Manual POLHEMUS(LOCAL)

N kME

VE-close.polhemus, VE-init-polhemus, VE-open-polhemus, VE-parse-polhemus,
VEsreadsraw-polhemus, VE -read polhemus, VE-write polhemus - Polhemus
3-Space Tracker Input Routines

SYNOPSIS

#include <VE.h>
void VE-close-polhemus()
void VE-init-polhemus 0

void VE.open-polhemus(ttyport, speed)
String ttyport;
int speed;
void VE-parse-polhemus(pd, buf)
PolhemusData *pd;
char buf[];
int VE -read -raw-polhemus(buf, len)
char buf[];
int len;
void VE-read-polhemus(pd)
PolhemusData *pd;
void VE -write-polhemus(buf, len)
char buf[];
void VE -correct_polhemus -for-ab(pd)
PolhemusData *pd;

DESCRIPTION

These routines are used to interact with the Polhemus 3-Space Tracker.
VE_ close-polhemus closes the tty port to the Polhemus. Closing a port not

previously opened has undefined results.
VE-init-polhemus initializes the Polhemus to report data in a format specific

to the VEDS and the Polhemus' location in the graphics lab. To do this, the
Polhemus is first cold reset (a loud beep can be heard when this happens).
Next the Polhemus boresight is set to default, increment to 0, ASCII format,
and units in inches. The Polhemus operational envelope is set to the maximum
65 inches in all directions. Next the operational hemisphere is set to have its

56

POLHEMUS(LOCAL) Virtual Environment Manual POLHEMUS(LOCAL)

zenith on the Z axis (pointing towards the floor in the graphics lab). The
output record is then set to the following:

Code Value
2 Cartesian Coordinates (X, Y, Z)
4 Orientation Angles (azimuth, elevation, roll)
5 X-axis direction cosines (x, y, z)
6 Y-axis direction cosines (x, y, z)
7 Z-axis direction cosines (x, y, z)
1 CR, LF

The Polhemus is then set for continuous output mode. See the Polhemus 3-
Space User's Manual for a full explanation of the options set by VE-iniLpolhemus.

VE-open-polhemus opens the Polhemus for use. The Polhemus should be
connected to the tty port specified by the null terminated string ttyport. The
baud rate is specified by the speed parameter. The baud rate should be spec-
ified by a capital "B" followed by the baud rate as in "B9600". See the file
/usr/include/termio.h for a list of the baud rate codes. Be sure that the
selected speed matches the DIP switch settings on the back of the Polhemus.

VE-parse-polhemus parses the raw data stream from the Polhemus into the
PolhemusData structure pointed to by pd. The raw data record should be in
buf, exactly as returned from VE-read-raw-polhemus.

VE-read-raw-polhemus reads data directly from the Polhemus placing it in
the String pointed to by buf. The length of the data stream to read is specified
by the parameter len. This routine will normally not be used.

VE-read-polhemus essentially runs VE-read-raw-polhemus and VE-parse-polhemus
to fill the PolhemusData structure pointed to by pd with the most current data
from the Polhemus. This is the normal way to get information from the Pol-
hemus.

VE-correcLpolhemus-for-lab makes corrections to the polhemus data based
on the location of the polhemus source within the graphics lab. This alters
the y and z position by setting y = -y and z = 79 - z. The y and z direction
cosines are also inverted.

DATA TYPES

typedef struct
{

Byte sensor;

57

POLHEMUS(LOCAL) Virtual Environment Manual POLHEMUS(LOCAL)

Position pos;
Orientation or;
DirectionCosine xdc;

DirectionCosine ydc;
DirectionCosine zdc;
Quaternion quat;

} PolhemusData;

SEE ALSO

Polhemus 3-Space User's Manual, remote(LOCAL), server(LOCAL)

AUTHOR

Bob Filer

58

SPACEBALL(LOCAL) Virtual Environment Manual SPACEBALL(LOCAL)

NAME

VE.close-spaceball, VEinit-spaceball, VE-open.spaceball, VE-parsespaceball,
VE-read-raw .spaceball, VE-readspaceball, VE-write -spaceball - CIS Dimen-
sion Six Spaceball Input Routines

SYNOPSIS

#include <VE.h>
void VE-close -spaceball()
void VE-init-spaceball(mode)
Byte mode;
void VE-open-spaceball(ttyport, speed)
String ttyport;
int speed;
void VE-parse spaceball(sd, buf)
SpaceballData *sd;
char buf[];
int VE-read-raw -spaceball(buf, len)
char buf[];
int len;
void VE.-read spaceball (sd)
SpaceballData *sd;
void VE.write-spaceball(buf, len)
char buf[];

DESCRIPTION

These routines are used to interact with the CIS Dimension Six Spaceball.
VE-close-spaceball closes the tty port to the Spaceball. Closing a port not

previously opened has undefined results.
VEinit-spaceball initializes the Spaceball to report data in a the format

specified by the mode parameter. By default, the Spaceball uses the SBFORCE
data format. The other available format is SBVOLTAGE. Be sure the DIP
switch settings on the Spaceball match the mode selected. See the Dimension
Six User's Guide for a full explanation of the two data formats.

VEopen-spaceball opens the Spaceball for use. The Spaceball should be
connected to the tty port specified by the null terminated string ttyport. The

59

SPACEBALL(LOCAL) Virtual Environment Manual SPACEBALL(LOCAL)

baud rate is specified by the speed parameter. The baud rate should be spec-
ified by a capital "B" followed by the baud rate as in "B9600". See the file
/usr/include/termio.h for a list of the baud rate codes. Be sure that the
selected speed matches the DIP switch settings on the bottom of the Spaceball.

VE-parsespaceball parses the raw data stream from the Spaceball into the
SpacebailData structure pointed to by sd. The raw data record should be in
buf, exactly as returned from VE-read-raw.space ball.

VE-read.raw-space ball reads data directly from the Spaceball placing it in
the String pointed to by buf. The length of the data stream to read is specified
by the parameter len. This routine will normally not be used.

VEreadspace ball essentially runs VE-readrawspace ball and VE-parse-spacebal
to fill the SpacebalData structure pointed to by sd with the most current data
from the Spaceball. This is the normal way to get information from the Space-
ball.

DATA TYPES

typedef struct

{
short xtrans;
short ytrans;
short ztrans;
short xrot;
short yrot;
short zrot;

short button;
} SpaceballData;

SEE ALSO

Dimension Six User's Guide, remote(LOCAL), server(LOCAL)

AUTHOR

Bob Filer

60

SERVER(LOCAL) Virtual Environment Manual SERVER(LOCAL)

NAME

VEserver - Virtual Environment Input Server

SYNOPSIS

VEserver [-f config.file][-d] &

DESCRIPTION

VEserver is the Virtual Environment Input Server. It has two main tasks:
(1) continuously sample the configured input devices and (2) service network
requests for input data. The server should be run in the background.

The operation of the server is controlled through a configuration file. This
file specifies which input devices are connected, to which port, and at what
baud rate. The configuration file also specifies the calibration and gesture files
used with the VPL DataGlove.

By default, the configuration file VEdefault.config is used for configuration
information. This may be overridden using the -f option. The format of the
configuration file is shown in the following table.

Keyword Path Baud Rate
joystick /dev/ttyXX 300-19200
spaceball /dev/ttyXX 300-19200
polhemus /dev/ttyXX 300-19200
dataglove /dev/ttyXX 300-19200
calibration-file /path/file
gesture-file /path/file

SEE ALSO

remote(LOCAL)

AUTHOR

Bob Filer

61

REMOTE(LOCAL) Virtual Environment Manual REMOTE(LOCAL)

NAME

VE.open-remote, VE-read-remote, VE-close-remote - Virtual Environment
Remote Input Routines

SYNOPSIS

#include <VE.h>
void VE.open.remote(host)
String host;
void VE-read-remote(command, data)
Byte command;
Byte *data;
void VE-read-rawremote(command, buf, size)
Byte command;
Byte *buf;
int size;
void VE.close.-remote()

DESCRIPTION

These routines are used to get data from input devices attached to a remote
machine. The remote machine must be running the Virtual Environment Input
Server as explained in server(LOCAL) and have input devices attached. The
currently supported input devices are the VPL Dataglove, the CH Products
Microstick Joystick, the CIS Dimension Six Spaceball, and the Polhemus 3-
Space Tracker.

VE.open-remote opens a connection to the server located on the machine
specified by the null terminated string host.

VE-read-remote retrieves input data from the server for the device specified
in command. The current valid values of command and their meanings are
shown in the following table.

SENDDATAGLOVE DatagloveData
SEND-JOYSTICK JoystickData
SENDPOLHEMUS1 l-olhemusData for sensor 1
SENDPOLHEMUS2 PolhemusData for sensor 2
SENDSPACEBALL SpaceballData

The argument data should point to a structure of the appropriate type for the
data being requested (see the table above).

62

REMOTE(LOCAL) Virtual Environment Manual REMOTE(LOCAL)

VE-readraw.remote reads the raw byte stream directly from the server
placing it in buf. The length of the byte stream to read is specified by the
parameter size. The command parameter is as shown in the preceding table.
This routine will normally not be used.

VE-close.remote sends a SHUTDOWN command to the server and severs
the connection.

EXAMPLE

The following sample code establishes a connection to the server, reads the
current value from the Spaceball into sd, and the closes the connection.

#include <VE.h>
SpaceballData sd;
main()
{

VE-open remote("louvre");
VE-read-remote(SENDSPACEBALL, &sd);
VE-close_.remote(;

SEE ALSO

dataglove(LOCAL), joystick(LOCAL), polhemus(LOCAL), spaceball(LOCAL),
server(LOCAL)

AUTHOR

Bob Filer

63

GRAPHICS(LOCAL) Virtual Environment Manual GRAPHICS(LOCAL)

NAME

VE-lookat, VE-perspective, VE-find-color - Virtual Environment Graphics
Control Routines

SYNOPSIS

#include <VE.h>
void VE-lookat(vx, vy, vz, px, py, pz, twist)
float vx, vy, vz, px, py, pz, twist;
void VE-perspective(fov, aspect, near, far)
float fov, aspect, near, far;
Colorindex VE-find-color(r, g, b)
float r, g, b;

DESCRIPTION

VE-lookat defines the viewpoint and a reference point on the line of sight
in world coordinates with the Z axis up. The viewpoint is at (vz, vy, vz).

The viewpoint and reference point (p:, py, pz) define the line of sight. Twist
measures the right-hand rotation about the Z-axis in the eye coordinate system.

VE-perspective defines a projection transformation by indicating the field-
of-view angle fovy in the y direction of the eye coordinate system; the aspect
ratio that determines the field of view in the x direction; and the distance to
the near and far clipping planes in the z direction. The aspect ratio is a ratio of
z to y. In general, the aspect ratio in VE.perspective should match the aspect
ratio of the associated viewport. For example, aspect = 2.0 means the viewer's
angle of view is twice as wide in z as it is in y. If the viewport is twice as
wide as it is tall, it displays the image without distortion. near and far are the
distances from the viewer to the near and far clipping planes, and are always
positive.

VE-find-color returns a Colorindex into the color table corresponding to
the RGB value specified by r, g, and b. The RGB values should be in the
range 0.0 < RGB < 1.0.

AUTHOR

Bob Filer

64

HAND(LOCAL) Virtual Environment Manual HAND(LOCAL)

NAME

VE-display-hand - Virtual Environment Hand Display Routine

SYNOPSIS

#include <VE.h>
void VE-display-hand (data)
DatagloveData *data;

DESCRIPTION

The VEdisplay.hand routine is used to display a wireframe model of a human
right hand. The data parameter is a pointer to a DatagloveData structure
which should contain values indicating position, orientation, and finger flex of
the hand.

The hand is modeled with the palm centered at the origin. The palm is
4h(Z) x 3.75w(X) x 0.75d(Y). The fingers and thumb are 4h(Z) x 0.75w(X) x
0.75d(Y).

SEE ALSO

dataglove(LOCAL)

AUTHOR

Bob Filer

65

MENU(LOCAL) Virtual Environment Manual MENU(LOCAL)

NAME

VE-create-nenu, VE.menu-choice, VE.menu.on, VEmenu-off - Virtual En-
vironment Menu Routines

SYNOPSIS

#include <VE.h>
VEObject *VE-create-menu (text)
char *text[];
void VE-menu -choice(menu, choice)
VEObject *menu;
Byte choice;
void VE-menu-on (menu)
VEObject *menu;
void VE-menu off(menu)
VEObject *menu;

DESCRIPTION

The VE-create-menu builds a 3-D menu. The menu items are taken from text,
which should be an array of pointers to null-terminated strings. Each string
will be one menu choice. A NULL pointer ends the list.

VE-menu-choice highlights the menu item specified by choice. Menu items
begin numbering at 1. Choice should be set to NO-CHOICE when no high-
lighting is desired.

VE-menu-on and VE-menu-off turn the display of the menu on and off.

EXAMPLE

The following code fragment will build a menu containing the choices "Start"
and "Quit":

char *text[] = {"Start", "Quit", NULL};
VEObject *menu;
menu = VE-create-menu(text);

AUTHOR

Bob Filer

66

OBJECTS(LOCAL) Virtual Environment Manual OBJECTS(LOCAL)

NAME

VE-.build -object, VE-display..nbject, VE-Aisplay-objects, VE-translate.object,
VE..xotate-object, VE..scale-object - Virtual Environment Object Routines

SYNOPSIS

#include <VE.h>
VE..Object *VE-build-object (filename)
String filename;
void VE -display -object (veobj, eye, lookat)
VE-.Object *veobj;
Position *eye;
Position *lookat;
void VE..display-objects (objects, size, eye, lookat)
VE..Object *objects[];
mnt size;
Position *eye;
Position *lookat;
void VE-transiate..object(obj, x, y, z, action)
VE-Object *obi;
float x, y, z;
Byte action;
void VE..rotate-object(obj, x, y, z, action)
VE-.Object *obj;
float x, y, z;
Byte action;
void VE..-scale..-object (obj, x, y, z, action)
VE-Object *obj;
float x, y, z;
Byte action;

DESCRIPTION

VE-build-object takes a AFIT geometry file description of an object and builds
a Virtual Environment Object (VE-Object). The parameter filename should
be a null-terminated string containing the name of an AFIT geometry file.
Both a wireframe and a BSP-tree representation are built.

VE-display-object displays the object pointed to by veobj based on the eye
point specified by eye and the lookat point specified by lookat.

67

OBJECTS(LOCAL) Virtual Environment Manual OBJECTS(LOCAL)

VE-display.objects displays all the objects contained in the array of pointers
to objects objs. The number of objects in the array is specified by the size
parameter. The view is based on the eye point eye and the lookat point lookat.

VEtranslate.object, VE.rotate-object, and VE-scaleobject translate, ro-
tate, and scale the Virtual Environment Object pointed to by obj. The amount
of the transformation in each direction is specified by the values x, y, and z.
The action parameter indicates how the transformation values will be applied
to the current transformation values for the object. Possible values for action
and the associated action are shown below.

XFORMSUBTRACT New values are subtracted from the current values
XFORMADD New values are added to the current values
XFORMEQUAL Current values are replaced by the new values
XFORM.REPLACE Current values are replaced by non-zero new values

DATA TYPES

typedef struct
{

Colorindex color;
Boolean visible;
SmallPosition scale;
SmallPosition rotation;
Position position;
float distance;
Position centroid;
Position bb[BBOXSIZE];
Displaytype type;
Boolean display;
Object wire;
TreeNode *bsp;
Menu menu;
Matrix matrix;
Matrix inverse-matrix;

} VEObject;

AUTHOR

Bob Filer

68

TERRAIN(LOCAL) Virtual Environment Manual TERRAIN(LOCAL)

NAME

VE-buildterrain - Virtual Environment Terrain Routines

SYNOPSIS

#include <VE.h>
Object VE -build-terrain(minx, miny, maxx, maxy, z)
float minx, miny, maxx, maxy, z;

DESCRIPTION

VE-build-terrain creates a single green polygon (a rectangle) with corners spec-
ified by the minz, miny, maxx, and mazy parameters. The terrain is parallel
to the X-Y plane at a height specified by z. The green terrain is overlaid with
a black 10 x 10 grid.

The terrain should be displayed using the Silicon Graphics routine callobj,
and should be called before displaying any other objects.

AUTHOR

Bob Filer

69

CONTROL(LOCAL) Virtual Environment Manual CONTROL(LOCAL)

NAME

VE-begin, VEibegin-graphics, VE-end, VE-endgraphics, VE-abort - Virtual
Environment Control Routines

SYNOPSIS

#include <VE.h>
void VE-begin()
void VE.begin -graphics (screen -mode)
int screen-mode;
void VE.end()
void VE-end -graphics()
void VE.abort(msg)
String msg;

DESCRIPTION

VE-begin initializes the Virtual Environment Display System (VEDS). This
should be the first routine called in any VEDS program.

VEbegin.graphics initializes the graphics subsystem of the VEDS. This
should be the second routine called in any VEDS program which uses graphics.
The mode parameter should be either NTSC or HZ60 depending on whether
NTSC or 60 hertz mode is desired.

VE-end shuts down the VEDS. This should be the last routine called in
any VEDS program.

VE-end-graphics shuts down the graphics subsystem of the VEDS. This
should be the next to last routine called in any VEDS program which uses
graphics.

VE-abort causes an immediate but graceful abort from the VEDS. The
parameter msg should be a null-terminated string which will be printed to
standard output upon exit from the VEDS.

AUTHOR

Bob Filer

70

GEOMFILE(LOCAL) Virtual Environment Manual GEOMFILE(LOCAL)

NAME

VE.close-geometryfile, VE-opengeometryfile, VE.-read geometryfile, VE-get-face
- Virtual Environment Geometry File Reading Routines

SYNOPSIS

#include <VE.h>
void VE-close-geometryfile()
void VE-open-geometryfile(filename)
String filename;
void VE-read.geomet ryfile()
Face *VE-get-face()

DESCRIPTION

These routines are used for reading AFIT geometry files with the Virtual En-
vironment Display System.

VE-close-geometryfile closes a previously opened geometry file. Calling
VE-close-geometryfile without previously opening a geometry file is an error.

VE.open-geometryfile opens the file specified by the null-terminated string
filename which should be the name of an AFIT geometry file.

VE-read-geometryfde reads the previously opened geometry file into an in-
ternal data structure making it available for access through calls to VE-get-face.
Subsequent calls to VE-get-face return pointers to Face structures for each
polygon described in the AFIT geometry file. VE-get-face returns NULL when
all polygons have been exhausted.

SEE ALSO

AFIT Geometry File Format Specification

AUTHOR

Bob Filer

71

VEMATH(LOCAL) Virtual Environment Manual VEMATH(LOCAL)

NAME

VE-getidentity -matrix, VE-copy-matrix, VE.mult-matrix, VE-invert -matrix,
VErmult _vec-matrix, VErmult -vecstruct -matrix, VE-dot-vector, VE-dot-vectorstruct,
VE-cross-vector, VE-normalize vector, VE-copy-vector, VE-add-vector, VE-subtract-vectol
VE-equal-vector, VE-distance - Virtual Environment Matrix and Vector Math
Routines

SYNOPSIS

#include <VE.h>
void VE-get_3dentity-matrix(m)
Matrix m;
void VEcopy-matrix(ml, m2)
Matrix ml, m2;
void VE-multiply-matrix(result, ml, m2)
Matrix result, ml, m2;
void VE-invert-matrix(orig, inv)
Matrix orig, inv;
void VE-mult-vec -matrix(result, v, m)
Vector result, v; Matrix m;
void VE-mult-vecstruct-matrix(result, v, m)
VectorStruct *result, *v; Matrix m;
double VE-dot-vector(vl, v2)
Vector vl, v2;
double VE-dot vectorstruct(vl, v2)
VectorStruct *vl, *v2;
void VE-cross-vector(result, v1, v2)
Vector result, v1, v2;
double VE-normalize-vector(v)
Vector v;
void VE-copy-vector(vl, v2)
Vector v1, v2,
void VE-add-vector(result, v1, v2)
Vector result, vl, v2;
void VE subtract-vector(result, v1, v2)
Vector result, v1, v2;
Boolean VE-equal-vector(vl, v2)
Vector v1, v2;

72

VEMATH(LOCAL) Virtual Environment Manual VEMATH(LOCAL)

double VE-distance(from, to)
Position *from, *to;

DESCRIPTION

These routines are used for simple vector and matrix manipulations.
VE-get-identity-matrix sets m to the identity matrix.
VE-copy-matrix copies matrix ml into m2.
VE-mult-matriz computes the matrix multiplication result = [ml][m2].
VE-invert matrix computes the inverse of orig and places it in inv.
VE-mult-vec-matrix and VE-mult-vecstruct-matrix compute the vector-matrix

multiplication result = [v][m].
VE-dot-vector and VE-dot-vector.q0-uct compute the vector dot product of

v1 and v2.
VE-cross.vector computes the vector cross product of vi into v2. VE-normalize-vector

normalizes the vector v and returns the length of the original vector.
VE-copy-vector copies v1 into v2.

VE-add-vector adds the vectors v and v2.
VE-subtract-vector subtracts the vector v2 from v1. VE-equaLvector com-

pares the vectors v1 and v2 element by element returning TRUE if they are
the same.

VE-distance computes the Euclidean distance between the 3-space points
from and to.

AUTHOR

Bob Filer

73

Appendix B. HMD-H User's Guide

Introduction

The AFIT HMD-II is a fully enclosed head-mounted display system using wide-

angle optics and color LCD televisions. The LCD televisions are powered by an

external power supply. The system has two separate video input channels and is

capable of displaying a stereo image. The video signals and external power are

brought to the HMD-II system through an external cable bundle, which can be

detached from the drive electronics.

The following sections explain how to setup and operate the AFIT HMD-II.

In addition, the construction of the cable bundle is explained in detail.

Preparing the HMD-II for Use

Before the HMD-II can be used it must be attached to its drive electronics.

The drive electronics consist of an adjustable voltage power supply and a Lyon-Lamb

R GB-NTSC converter. The HMD-II is connected to the drive electronics with a 20

foot tether cable. Figure 27 shows a block diagram of the complete HMD-II system.

The following procedure should be used when attaching the HMD-II to the

drive electronics.

1. Begin by only attaching the 20 foot tether cable to the drive electronics; the

HMD-II should be detached from the tether at the 10-pin connector. Ensure

that both the power supply and the Lyon-Lamb encoder are turned off before

proceeding.

2. Attach the brown power cord to the power supply. The cord is color-coded

with red indicating the positive (+) lead.

74

Lyon-Lamb SPplyr

Encoder Supply

4-pin
Connector

10-pin
Connector

Figure 27. Block Diagram of the HMD-II System

3. Attach the left and right video cables to the Lyon-Lamb encoder using a "T"

connector. The "T" connector should be attached to the Video Out 1 connector

on the back of the Lyon-Lamb.

4. Turn on the power supply and adjust the voltage to read +6 volts. The

HMD-II should not be attached while adjusting the power supply.

Once adjusted, turn off the power supply.

5. Attach the HMD-II pigtail cable to the tether cable using the 10-pin connector.

Screw the two halves of the connector together to secure the connection.

6. Turn on the power supply and the Lyon-Lamb encoder. The system is now

ready for use.

75

HMD-II Enclosure Maintenance

The AFIT HMD-II is essentially maintenance-free. There are almost no moving

parts, and very few adjustable parts. However, two particular elements of the AFIT

HMD-II require further explanation. These are the cable bundle attaching the HMD-

II to its drive electronics, and the press-on prisms.

Cable Bundle The HMD-II cable bundle consists of two sections joined to-

gether at a 10-pin connector. The main section of the cable, the tether, is approx-

imately 20 feet long. It carries power and video from the power supply and the

Lyon-Lamb RGB-NTSC encoder to the 10-pin connect(.r. The second segment of

cable, the pigtail, is only about 3 feet long. It carries power and video from the

10-pin connector to the televisions inside the HMD-II. The pigtail is permanently

attached to the head-mounted display.

Cable Specifications. In the tether segment, power is carried over 16

gauge, two conductor extension cord wire. The end connected to the power sup-

ply is color-coded; red indicates the positive (+) lead. The video signal is carried

over RG59 coaxial cable. There is a separate cable for the left and right video signals

for stereo support.

In the pigtail segment, power is carried over RG174 coaxial cable. The center

conductor is the positive (+) lead. The video signal is carried over RG58 coaxial

cable. Once again there is a separate cable for the left and right video signals.

Pinouts. Table 6 and Figure 28 show the pinouts for the tether and

pigtail segments of the HMD-II wiring harness. For example, referring to Table 6,

the positive power lead comes from the power supply to pin 9 in the 10-r~n connector.

This lead is then split into two separate wires, each running to pin 4 of the left and

right 4-pin connectors.

76

Table 6. HMD-II Wiring Harness Pinouts

Drive Equipment 10-pin Connector 4-pin Connectors Televisions]
1 Positive () Lead 9 4L and 4R Power
2 Negative (-) Lead 8 3L and 3R Ground
3 Right Video Conductor 2 2R V. IN
4 Right Video Shield 1 1R GND
5 Left Video Conductor 6 2L V. IN
6 Left Video Shield 7 1L GND

Fresnel Press-on Prisms. The Fresnel press-on prisms used in the AFIT HMD-

II were purchased from Bell Optical of Dayton, Ohio. Each lens in the LEEP optics

is fitted with a +25 diopter prism which has been cut to size. Thirty diopter prisms

are available and should be used if someone with a narrow-set eyes is to use the

system.

77

MALE

FEMALE®

-0 03

Figure 28. 10-Pin and 4-Pin Connector Pin Numbers

78

Appendix C. AFIT Geometry File Format

The AFIT geometry file provides a method for describing three dimensional

objects composed of planar polygons, and for specifying attributes such as color

and a shading model. The file is organized in a position dependent manner such

that the position of a line within the file (its "line number") determines the class of

information a line may contain.

The file syntax is shown in Table 7. In the table, literal symbols appear as

contiguous strings of alphabetic characters. Substitutable symbols appear in angle

brackets "<" and ">". Optional information appears within square brackets "["

and "]". C-style comments (/* */) and #include and #define directives may be

contained within an AFIT geometry file.

79

Table 7. AFIT Geometry File Format

Line Keywords Comments
1 None Up to 1024 characters
2 [ccw] [cw] [purge] [nopurge] Geometry Parameters
3+ points <# of points> Object component and

patches <# of patches> attribute counts
[parts <# of parts> <list>
[bsp <# of nodes>]
[attributes <# of attributes>]
[textures <# of textures>]

4+ <x> <y> <z> Vertex Lines
[normal <i> <j> <k>]
[color <r> <g>
[tindex <u> <v>]

5+ <n> <pt 1>...<pt n> Polygon/Patch Lines
[attribute <n>]
[texture <n>)
[type {PLAIN, COLOR, TEXTURE}]

6+ [shading {FLAT, GOURAUD, PHONG}] Attribute Lines
[reflectance {FLAT, PHONG, COOK}]
[kd <n>]
[ks <n>]
[n <ny]
[opacity <n>]
[color <r> <g>]
[in <n>]
[material <filename>

7+ filenF Texture Map Filename

80

Bibliography

1. Breglia, Dennis R. and others. "Helmet-mounted Laser Projector." In Proceed-
ings of the Image Generation/Display Conference II, pages 241-258, Williams
AFB AZ: Operations Training Division, Air Force Human Resources Labora-
tory, 1981.

2. Brooks, Frederick P. Jr. Graping Reality Through Illusion. Technical Report
TR88-007, University of North Carolina at Chapel Hill, March 1988.

3. Callahan, M. A. A 3-D Display Head-Set for Personalized Computing. MS the-
sis, Department of Architecture, Massachusetts Institute of Technology, 1983.

4. CH Products. CH Products Microstick User's Guide. Technical Report. San
Marcos CA, 1985.

5. Chung, James C. and others. "Exploring Virtual Worlds With Head-Mounted
Displays." In Three Dimensional Visualization of Scientific Data, SPIE Pro-
ceedings, Volume 1083, July 1989.

6. CIS Graphik und Bildverarbeitung GmbH. Dimension 6 User's Manual. Tech-
nical Report. Viersen West Germany, December 1987.

7. Fisher, Scott S. "Virtual Environment Display System." In Proceedings of the
1986 Workshop on Interactive 3-D Graphics, pages 77-87, New York: Associa-
tion for Computing Machinery, 1987.

8. Fuchs, Henry and others. "On Visible Surface Generation by A Priori Tree
Structures." In Proceedings of the SIGGRAPH 80 Conference, pages 124-133,
New York: Association for Computing Machinery, July 1980.

9. Fuchs, Henry and others. "Near Real-Time Shaded Display of Rigid Objects."
In Proceedings of the SIGGRAPH 83 Conference, pages 65-69, New York: As-
sociation for Computing Machinery, July 1983.

10. Grimaud, Jean-Jacques. Personal interview. Boston MA, 3 August 1989.

11. Leffier, Smauel J. and others. An Advanced 4.3BSD Interprocess Communi-
cation Tutorial. Technical Report, Berkeley CA: Computer Systems Research
Group, Department of Electrical Engineering and Computer Science, University
of California, Berkeley, 1986.

12. Lorimor, Gary Kim. Real-Time Display of Time Dependent Data Using a Head-
Mounted Display. MS thesis, AFIT/GE/ENG/88D-22, School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December
1988.

13. Polhemus Navigational Sciences Division, McDonnell Douglas Electronics Com-
pany. 3Space User's Manual. Technical Report OPM3016-004. Colchester VT,
January 1985.

81

14. Ponting, Bob. "Virtual Reality System Readied," Infoworld, 11:17+ (July
1989).

15. Rebo, Capt Robert K. A Helmet-Mounted Virtual Environment Display Sys-
tem. MS thesis, AFIT/GCS/ENG/88D-17, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, December 1988.

16. Reflection Technology. Introducing the Private Eye. Product Announcement.
Cambridge MA, August 1988.

17. Schachter, Bruce J. Computer Image Generation. New York: John Wiley and
Sons, 1983.

18. Silicon Graphics Inc. Silicon Graphics Pipeline. Quarterly 007-7086-010.
Mountain View CA, 1986.

19. Smith, Douglas B. and Dale G. Streyle. An Inexpensive Real-Time Interactive
Three-Dimensional Flight Simulation System. MS thesis, Naval Postgraduate
School, Monterey CA, June 1987.

20. Sony Corporation of America. FDL-330 Color Watchman. Product Announce-
ment. Park Ridge NJ, March 1989.

21. Sun Microsystems Inc. Sun-4/260. Product Announcement. Mountain View
CA, January 1988.

22. Sutherland, Ivan E. "The Ultimate Display." In Proceedings of the IFIP
Congress 65, pages 506-508, 1965.

23. Sutherland, Ivan E. "A Head-Mounted Three Dimensional Display." In Pro-
ceedings of the AFIPS Fall Joint Computer Conference, pages 757-764, 1968.

24. Sutherland, Ivan E. and others. "A Characterization of Ten Hidden-Surface
Algorithms," Computing Surveys, 6(1) (1974).

25. Task, H. Lee. Personal interview. Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, November 1988.

26. Tektronix, Inc. Multi-Mode Stereoscopic -Dimensional Color Display. Product
Announcement. Beaverton OR, July 1989.

27. VPL Research, Inc. Dataglove Model 2. Product Announcement. Redwood
City CA, March 1989.

28. Wardin, Capt Charles R. Battle Management Visualization System. MS thesis,
AFIT/GE/ENG/89D-56, School of Engineering, Air Force Institute of Technol-
ogy (AU), Wright-Patterson AFB OH, December 1989.

82

Vita

Captain Robert E. Filer

Following high school, he attended the United States Air Force Academy where he

received his Bachelor of Science degree in May 1984. After receiving his commission,

he was assigned to the System Software Branch of the Information Systems Direc-

torate at the Air Force Institute of Technology (AFIT). He worked there until he

entered AFIT as a full-time student in May 1988.

83

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE
SForm Approved

REPORT DOCUMENTATION PAGE OMBN 07040188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
Za. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for public release;
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/89D-2
s. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(if applicable)

School of Engineering AFIT/ENG
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology (AU)
Wright-Patterson AFB, Ohio 45433-6583

Sa. NAME OF FUNDING /SPONSORING a Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATIONI (If applicable)

AAMRL HEA

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT ITASK LWORK UNIT

Wright-Patterson AFB ELEMENT NO. NO. NO CCESSION NO.
Ohio 45433

11. TITLE (Include Security Classification)

A 3-D Virtual Environment Display System (UNCLASSIFIED)

12. PERSONAL AUTHOR(S)

Robert E. Filer, Ca tain USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Dy) 15. PAGE COUNT

MS Thesis - FROM_ TO 1989 December 95
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identif by block number)

FIELD GROUP SUB-GROUP Helmet Mounted Displays
25 1 03 Computer Graphics
12 I

19. ABSTRACT (Continue on reverse If necessary and identify by block number)

Thesis Advisor: Elton P. Amburn, Maj, USAF
Instructor

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION
OUNCLASSIFIED/UNLIMITED q SAME AS RPT. C DTIC USERS UNCLASSTFD

22&. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Are Code)I 22c OFFICE SYMBOL
ELTON P. AMBURN, Instructor (513) 255-9268 1 AFTT/FN(,

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

The design and development of a Virtual Environment Display System is presented.
The system is composed of two main parts, a software library to support the development
of virtual environment applications and a head-mounted display for viewing the virtual
environment.

The software library provides support for numerous input devices including a VPL Data-
Glove, Polhemus 3-Space Tracker, Dimension Six Force-Torque Ball, and a joystick. Graphi-
cal objects can be displayed in either wireframe or shaded mode. Three dimensional pop-up
menus are provided.

The head-mounted display is a fully-enclo-ed viewing device built using off-the-shelf
components. The displays are color LCD televisions and are viewed through wide angle
optics. Head position and orientation are tracked using a Polhemus 3-Space Tracker.

UNCLASSIFIED

_ NO)

